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A single-mode laser system with colored cross-correlated additive and multiplicative noise terms is consid-
ered. By the means of projection operator method, we study the effects of the cross-correlation time τ and
the cross-correlation intensity λ between noises on the normalized intensity correlation function C(s). It is
found that if λ > 0 (λ < 0), the normalized intensity correlation function C(s) increases (decreases) with
increasing the cross-correlation time τ , and at large value of τ , the variation of the normalized intensity
correlation function C(s) becomes small. With the increase of the net gain a0, C(s) exhibits a maximum
when λ is larger. However, a minimum and a maximum appear on C(s) curves with the increase of a0

when λ becomes smaller and smaller.
OCIS codes: 140.3570, 140.0140, 140.3430.

According to the study of laser system, the statistical
properties of laser system can be regarded as a particu-
lar prototype of a nonlinear problem in non-equilibrium
statistical mechanics[1−6]. These previous studies as-
sumed that the additive and multiplicative noises have
different origins and are uncorrelated with each other.
In 1991, Fulinski et al. first introduced a correlation be-
tween an additive white noise and a multiplicative white
noise[7]. From then on, a lot of work on laser system
has been made in the investigation of nonlinear systems
with cross-correlated noises[8−11]. Those studies have re-
vealed that the consideration of additive and multiplica-
tive noises simultaneously is of importance to deeply un-
derstand statistical properties of single-mode laser sys-
tem. In recent years, the effects of cross-correlation be-
tween additive and multiplicative noises on statistical
fluctuation of the single-mode laser model have attracted
close attention[12−17]. In 2004, Zhang et al. studied the
stationary intensity distribution of the single-mode laser
cubic model driven by colored pump noise with cross-
correlation between the real and imaginary parts of the
quantum noise[18]. Xie et al. have used the projection
operator method to study the normalized intensity cor-
relation function of single-mode laser driven by cross-
correlated pump noise and quantum noise[19]. But this
study only considered the case of the cross-correlation
time τ = 0. In some instance, the cross-correlation
time of the additive and multiplicative noises is not zero
(τ �= 0). So in this paper, we investigate the effects of
cross-correlation time τ and cross-correlation intensity λ
on the normalized intensity correlation function.

The complex field-amplitude E of the cubic model
of a single-mode laser system can be described by the
Langevin equation (LE),

dE

dt
= a0E − A |E|2 E + p̃(t)E + q̃(t), (1)

where a0 and A are real and respectively stand for the
net gain and the self-saturation coefficient, p̃(t) is the
pump noise (multiplicative noise) and q̃(t) is the quan-

tum noise (additive noise). By performing the polar co-
ordinate transform E = reiϕ, Eq. (1) can be transformed
into two coupling LEs about the field-amplitude r and
the phase ϕ. By decoupling them, the LE of the field-
amplitude r can be obtained as[12]

dr

dt
= a0r − Ar3 +

D

2r
+ rp(t) + q(t). (2)

Assume I is the laser intensity (I = r2),

dI

dt
= (2a0 − AI)I + D + 2I1/2q(t) + 2Ip(t). (3)

We usually consider that the multiplicative noise p(t)
and the additive noise q(t) are Gaussian-type noises,

〈q(t)〉 = 〈p(t)〉 = 0, (4)

〈q(t)q(t′)〉 = Dδ(t − t′), (5)

〈p(t)p(t′)〉 = Qδ(t − t′), (6)

and

〈p(t)q(t′)〉 = 〈q(t)p(t′)〉 =
λ
√

QD

2τ
exp [− |t − t′| /τ ]

→ λ
√

QDδ(t − t′)

as τ → 0, (7)

where Q and D are the multiplicative and the additive
noise intensities, respectively. τ and λ are the cross-
correlation time and the cross-correlation intensity, re-
spectively. Applying the Novikov theorem[20] and the
Fox’s approach[21], the approximate Fokker-Planck equa-
tion corresponding to Eq. (3) reads

∂P (I, t)
∂t

= LFPP (I, t), (8)

LFP = − ∂

∂I
f(I) +

∂2

∂I2
G(I), (9)

1671-7694/2007/050288-04 c© 2007 Chinese Optics Letters



May 10, 2007 / Vol. 5, No. 5 / CHINESE OPTICS LETTERS 289

where the drift coefficient f(I) and the diffusion
coefficient G(I) are given by

f(I) = 2(a0 − AI + Q)I + 3
λ

1 + 2a0τ

√
DQI1/2 + 2D,

(10)

G(I) = 2QI2 + 4
λ

1 + 2a0τ

√
DQI3/2 + 2DI. (11)

It should be pointed out that the above approximate
Fokker-Planck equation is valid only for the case of
1 + 2a0τ > 0. We only consider the stationary state.
The steady-state probability density of Eq. (8) can be
obtained as

Pst(I) = NW (I)m1(λ) exp(m2(λ)), (12)

where N is the normalization constant, and

W (I) = QI + 2
λ

1 + 2a0τ

√
DQI1/2 + D, (13)

m1(λ) =
a0

Q
−

AD(4 λ2

(1+2a0τ)2 − 1)

Q2
− 1, (14)

m2(λ) = −A

Q
I + 4A

λ

Q2(1 + 2a0τ)

√
DQI1/2 − m3(λ),

(15)

m3(λ) = m4(λ) arctan

√
QI
D + λ

1+2a0τ√
1 − λ2

(1+2a0τ)2

, (16)

m4(λ) =
2λ

(1 + 2a0τ)
√

1 − λ2

(1+2a0τ)2

×
⎛
⎝a0

Q
− AD

4λ2

(1+2a0τ)2 − 3

Q2
+

1
2

⎞
⎠ . (17)

The expectation values of the nth power of I is defined
by

〈In〉st =
∫ +∞

0

InPst(I)dI. (18)

Our prime concern in this paper is the normalized
intensity correlation function C(s), which characterizes
the decay behavior of the laser intensity fluctuations[19].
The normalized intensity correlation function of intensity
variation in a stationary state can be defined by[22]

C(s) =
〈δI(t + s)δI(t)〉st

〈(δI)2〉st
, (19)

where δI(t) = I(t) − 〈I〉, in terms of the adjoint oper-
ator L+

FP of the operator given by Eq. (9), δI(t + s) =

exp(L+
FPs)δI(t). Thus, one can rewrite Eq. (19) and get

the associated Laplace transform,

C̃(ω) =
∫ ∞

0

exp(−ωs)C(s)ds

=
1

〈(δI)2〉st

〈
δI

1
ω − L+

FP

δI

〉
st

. (20)

With the projection operator method used in Ref. [23] to
deal with the Laplace resolvent ω − L+

FP in Eq. (20), we
get the following continued fraction expression[22,23],

C̃(ω) =
1

ω + μ0 + η1
ω+μ1+

η2
ω+μ2+...

, (21)

in which

μi = −
〈
δIiL

+
FPδIi

〉
st

〈(δIi)2〉st
, (22)

ηi = −
〈
(δIi)2

〉
st

〈(δIi−1)2〉st
, (23)

δIi+1 = Si+1L
+
FPδIi. (24)

With starting δI0 = δI and S0 = 1, the operator Si is
determined by

Ki−1 = Si−1 − Si =
δIi−1

〈(δIi−1)2〉st
〈δIi−1| , (25)

where the operator 〈δIi| acting on ϕ(I) means the scalar
product

〈δIi|ϕ(I) = 〈(δIiϕ(I))〉st =
∫ ∞

0

Pst(I)δIiϕ(I)dI. (26)

The projection operator Ki projects ϕ(I) onto the sub-
space associated with the variable δIi. The projector
Si projects onto the space orthogonal to the space con-
taining δIi. The basic idea behind the method used to
lead a continued fraction expansion is to identify δIi as a
slow variable and in Ji space it slaves the remaining fast
variables[24]. Setting η2 = 0, the first-order approxima-
tion of the intensity correlation-function is

C̃(ω) =
ω + μ1

(ω + μ0)(ω + μ1) + η1
, (27)

μ0 =
〈G(I)〉st
〈(δI)2〉st

, (28)

η1 =
〈G(I)f ′(I)〉st

〈(δI)2〉st
+ μ2

0, (29)

μ1 = −

〈
G(I) [f ′(I)]2

〉
st

η1 〈(δI)2〉st
+

μ3
0

η1
− 2μ0. (30)

Performing the Laplace converse transformation of Eq.
(27), we get

C(s) = β exp(−α−s) + (1 − β) exp(−α+s), (31)
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in which

α± =
μ0 + μ1

2
± 1

2

√
(μ1 − μ0)2 − 4η1, (32)

and

β =
μ1 − α−
α+ − α−

. (33)

Let τ = 0, the above results fall back to Eq. (22) pre-
sented in Ref. [19].

By virtue of the expression of the normalized inten-
sity correlation function Eq. (31), we can discuss the
influences of the cross-correlation time τ and the cross-
correlation intensity λ on C(s). Figure 1 shows the curves
of C(s) as a function of the cross-correlation time τ for
different values of the net gain a0. From Fig. 1(a), we see
that, C(s) increases with the increase of τ for the case
of positive correlation (λ = 0.25 > 0). In other words,
in the case of positive correlation, the cross correlation
time slows down the decay of the intensity fluctuation.
However, when the correlation between noises is nega-
tive (λ = −0.25 < 0), C(s) decreases with the increase
of τ (see Fig. 1(b)). That is to say, the cross-correlation
time speeds up the decay of the intensity fluctuation in
the case of negative correlation. We can find that at
larger value of the correlation time τ , there is almost
no difference for C(s) when τ changes. We also can
find that C(s) always decreases with the increase of a0

whether the correlation is positive or negative.
The parameter R = D

Q is the noise intensity ratio (the
ratio of the additive noise intensity to the multiplicative
noise intensity), and then we plot the curves of C(s)−τ as
Fig. 2. It is found that C(s) decreases with the increase
of R whether λ > 0 (Fig. 2(a)) or λ < 0 (Fig. 2(b)),

Fig. 1. C(s) as a function of the cross-correlation time τ for
D = 2.5, Q = 2.5, A = 3, and s = 0.2. (a) λ = 0.25; (b)
λ = −0.25.

Fig. 2. C(s) as a function of the cross-correlation time τ for
a0 = 3.2, A = 3, and s = 0.2. (a) λ = 0.25; (b) λ = −0.25.

Fig. 3. C(s) as a function of the net gain a0 for D = 1.5,
Q = 1.5, A = 6.5, τ = 8, and s = 0.2.

i.e., the noise intensity ratio always speeds up the decay
of the intensity function.

The curves of C(s) − a0 with different values of λ are
plotted in Fig. 3. It is obvious that C(s) exhibits a max-
imum with the increase of a0 when λ is larger. This
means that, with the increase of a0, the decay rate of the
intensity fluctuation in the stationary state turns over,
from slowing down to speeding up. However, a minimum
and a maximum appear on the curves of C(s) with the
increase of a0 when λ becomes smaller and smaller.

In conclusion, the intensity correlation function C(s)
becomes larger and larger with the increase of the cor-
relation time τ in the case of positive correlation. But
in the case of negative correlation, C(s) becomes smaller
and smaller with the increase of τ . With the increase
of the net gain a0, C(s) exhibits a maximum when λ is
larger. However, a minimum and a maximum appear on
the curves of C(s) with the increase of a0 when λ becomes
smaller and smaller.
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